Material Hub > Materialien

SLUB Dresden (Datenanbieter)

Ti-6Al-4V, conventionally hot-formed (Ti_C_L_1)

Bei diesem Datensatz handelt es sich um Ergänzungen zu folgender Materialbeschreibung: Ti-6Al-4V

The elastic properties (Young's modulus, shear modulus) of titanium alloy Ti-6Al-4V were investigated between room temperature and 400 °C in an additively manufactured variant (laser-based directed energy deposition with powder as feedstock, DED-LB/M) and from a conventional process route (hot rolled bar). The moduli were determined using the dynamic resonance method. The data set includes information on processing parameters, heat treatments, microstructure, grain size, specimen dimensions and weight, Young’s and shear modulus as well as their measurement uncertainty.

The dataset was generated in an accredited testing lab using calibrated measuring equipment. The calibrations meet the requirements of the test procedure and are metrologically traceable. The dataset was audited as BAM reference data. The dataset was made available under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/legalcode).

Further information on data and data acquisition, analysis, and experimental details are given in “Elastic modulus data for additively and conventionally manufactured variants of Ti‑6Al‑4V, IN718 and AISI 316L” published in Scientific Data.

Publikationstyp Forschungsergebnis
Anwendungsgebiete aerospace; energy; medical; automotive; high temperature application
Schlagwörter
BAM reference data
Young's modulus
Shear modulus
Zenodo
Data set
Bauform blank type: cylinder; Inclination of specimen (L-direction) relative to hot forming direction = 0°; m = 11.925 g
Gefüge
  • lamellar microstructure
Versuchsaufbau
  • Measurement of Young´s modulus and shear modulus: Elastotron 2000 (HTM Reetz, Berlin, Germany)
weitere Angaben
  • T = temperature
  • m = mass
  • ff(e) = fundamental resonance frequency of the bar in flexure (edge wise)
  • ff(f) = fundamental resonance frequency of the bar in flexure (flat wise)
  • ft = fundamental resonance frequency of the bar in torsion

Herstellungsverfahren und Ausgangsmaterialien

Name conventionally hot-formed
Beschreibung heat treatment: 1050°C/1h+air cooling to 20°C, 625°C/4.5h+air cooling to 20°C
Ausgangsmaterial

Physikalische Eigenschaften

Name Wert Bemerkung Messverfahren und -bedingungen
(mittlere) Korngröße 0.899 mm beta-grain size EBSD, cross-section
Abmessung (Länge) 100 mm T = 24 °C
Abmessung (Länge) 100.02 mm T = 50 °C
Abmessung (Länge) 100.07 mm T = 100 °C
Abmessung (Länge) 100.11 mm T = 150 °C
Abmessung (Länge) 100.16 mm T = 200 °C
Abmessung (Länge) 100.21 mm T = 250 °C
Abmessung (Länge) 100.25 mm T = 300 °C
Abmessung (Länge) 100.3 mm T = 350 °C
Abmessung (Länge) 100.35 mm T = 400 °C
Abmessung (Breite) 8.995 mm T = 24 °C
Abmessung (Breite) 8.997 mm T = 50 °C
Abmessung (Breite) 9.001 mm T = 100 °C
Abmessung (Breite) 9.005 mm T = 150 °C
Abmessung (Breite) 9.009 mm T = 200 °C
Abmessung (Breite) 9.013 mm T = 250 °C
Abmessung (Breite) 9.018 mm T = 300 °C
Abmessung (Breite) 9.022 mm T = 350 °C
Abmessung (Breite) 9.027 mm T = 400 °C
Abmessung (Tiefe) 3.001 mm T = 24 °C
Abmessung (Tiefe) 3.002 mm T = 50 °C
Abmessung (Tiefe) 3.003 mm T = 100 °C
Abmessung (Tiefe) 3.004 mm T = 150 °C
Abmessung (Tiefe) 3.006 mm T = 200 °C
Abmessung (Tiefe) 3.007 mm T = 250 °C
Abmessung (Tiefe) 3.009 mm T = 300 °C
Abmessung (Tiefe) 3.01 mm T = 350 °C
Abmessung (Tiefe) 3.012 mm T = 400 °C
Dichte 4.418 g/cm³ T = 24 °C
4.415 g/cm³ T = 50 °C
4.409 g/cm³ T = 100 °C
4.403 g/cm³ T = 150 °C
4.397 g/cm³ T = 200 °C
4.391 g/cm³ T = 250 °C
4.384 g/cm³ T = 300 °C
4.378 g/cm³ T = 350 °C
4.371 g/cm³ T = 400 °C
Mechanische Eigenschaften
 
Schubmodul 45 GPa ft = 8979.0 Hz ASTM E 1875, T = 24 °C
44 GPa ft = 8910.0 Hz ASTM E 1875, T = 50 °C
43 GPa ft = 8795.0 Hz ASTM E 1875, T = 100 °C
42 GPa ft = 8681.0 Hz ASTM E 1875, T = 150 °C
41 GPa ft = 8579.0 Hz ASTM E 1875, T = 200 °C
40 GPa ft = 8469.0 Hz ASTM E 1875, T = 250 °C
39 GPa ft = 8357.0 Hz ASTM E 1875, T = 300 °C
38 GPa ft = 8247.0 Hz ASTM E 1875, T = 350 °C
37 GPa ft = 8139.0 Hz ASTM E 1875, T = 400 °C
Zug-Elastizitätsmodul 117 GPa mean ASTM E 1875, T = 24 °C
116 GPa flat-wise in the thickness direction, ff(f) = 1579.0 Hz ASTM E 1875, T = 24 °C
117 GPa edge-wise in the width direction, ff(e) = 4624.0 Hz ASTM E 1875, T = 24 °C
115 GPa mean ASTM E 1875, T = 50 °C
115 GPa flat-wise in the thickness direction, ff(f) = 1569.0 Hz ASTM E 1875, T = 50 °C
115 GPa edge-wise in the width direction, ff(e) = 4592.0 Hz ASTM E 1875, T = 50 °C
112 GPa mean ASTM E 1875, T = 100 °C
112 GPa flat-wise in the thickness direction, ff(f) = 1551.0 Hz ASTM E 1875, T = 100 °C
113 GPa edge-wise in the width direction, ff(e) = 4540.0 Hz ASTM E 1875, T = 100 °C
110 GPa mean ASTM E 1875, T = 150 °C
110 GPa flat-wise in the thickness direction, ff(f) = 1532.0 Hz ASTM E 1875, T = 150 °C
110 GPa edge-wise in the width direction, ff(e) = 4488.0 Hz ASTM E 1875, T = 150 °C
107 GPa mean ASTM E 1875, T = 200 °C
107 GPa flat-wise in the thickness direction, ff(f) = 1514.0 Hz ASTM E 1875, T = 200 °C
107 GPa edge-wise in the width direction, ff(e) = 4437.0 Hz ASTM E 1875, T = 200 °C
105 GPa mean ASTM E 1875, T = 250 °C
104 GPa flat-wise in the thickness direction, ff(f) = 1497.0 Hz ASTM E 1875, T = 250 °C
105 GPa edge-wise in the width direction, ff(e) = 4384.0 Hz ASTM E 1875, T = 250 °C
102 GPa mean ASTM E 1875, T = 300 °C
102 GPa flat-wise in the thickness direction, ff(f) = 1479.0 Hz ASTM E 1875, T = 300 °C
102 GPa edge-wise in the width direction, ff(e) = 4331.0 Hz ASTM E 1875, T = 300 °C
100 GPa mean ASTM E 1875, T = 350 °C
99 GPa flat-wise in the thickness direction, ff(f) = 1460.0 Hz ASTM E 1875, T = 350 °C
100 GPa edge-wise in the width direction, ff(e) = 4277.0 Hz ASTM E 1875, T = 350 °C
97 GPa mean ASTM E 1875, T = 400 °C
97 GPa flat-wise in the thickness direction, ff(f) = 1443.0 Hz ASTM E 1875, T = 400 °C
97 GPa edge-wise in the width direction, ff(e) = 4226.0 Hz ASTM E 1875, T = 400 °C
Thermische Eigenschaften
 
linearer Längenausdehnungskoeffizient 8.4 10⁻⁶/K T = 50 °C
8.6 10⁻⁶/K T = 100 °C
8.8 10⁻⁶/K T = 150 °C
9 10⁻⁶/K T = 200 °C
9.08 10⁻⁶/K T = 250 °C
9.17 10⁻⁶/K T = 300 °C
9.26 10⁻⁶/K T = 350 °C
9.35 10⁻⁶/K T = 400 °C

Abbildungen und Diagramme

Tensile Modulus of Elasticity at different Temperatures
Tensile Modulus of Elasticity at different Temperatures
Change of Dimensions at different Temperatures compared to 24 °C
Change of Dimensions at different Temperatures compared to 24 °C
Density at different Temperatures
Density at different Temperatures
Coefficient of Linear Thermal Expansion at different Temperatures
Coefficient of Linear Thermal Expansion at different Temperatures
Shear Modulus at different Temperatures
Shear Modulus at different Temperatures
Fundamental Resonance Frequency of the Bar in Torsion at different Temperatures
Fundamental Resonance Frequency of the Bar in Torsion at different Temperatures
Fundamental Resonance Frequency of the Bar in Edge-Wise Flexure at different Temperatures
Fundamental Resonance Frequency of the Bar in Edge-Wise Flexure at different Temperatures
Fundamental Resonance Frequency of the Bar in Flat-Wise Flexure at different Temperatures
Fundamental Resonance Frequency of the Bar in Flat-Wise Flexure at different Temperatures

Daten bereitgestellt von

Ansprechpartner für diese Materialdaten

Material Hub-Team
Anfrage per E-Mail

Haftungsausschluss

Die BAM Referenzdaten wurden von der Bundesanstalt für Materialforschung und -prüfung (BAM) unter der Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/legalcode) auf Zenodo bereitgestellt.Die SLUB hat die bereitgestellten Inhalte einer Normalisierung unterzogen, die notwendig ist, um eine umfassende Recherche und die Vergleichbarkeit der Materialien zu ermöglichen. Trotz größter zumutbarer Sorgfalt können bei diesem Normalisierungsprozess Fehler auftreten, weshalb ausdrücklich darauf hingewiesen wird, dass auf Grundlage der im Material Hub vorhandenen Daten keine Entscheidungen zur Verwendung oder Anschaffung eines Materials getroffen werden dürfen. Vielmehr ist es notwendig den Datenerzeuger im Vorfeld einer solchen Entscheidung direkt zu kontaktieren, um die Korrektheit der Daten zu verifizieren.

Ähnliche Materialien

Wählen Sie die Materialeigenschaften aus, anhand derer ähnliche Materialien identifiziert werden sollen. Durch Hinzufügen weiterer Eigenschaften sowie Anpassen der jeweiligen Abweichung lässt sich die Ergebnisliste beeinflussen. Hier wird eine Auswahl der ähnlichsten Materialien angezeigt. Um die gesamte Liste zu erhalten, drücken Sie auf die Schaltfläche "Vollständige Ergebnisliste anzeigen".

5%

Letzte Aktualisierung: 29.07.2024
Feedback

Geben Sie uns gern Feedback zum Material Hub.

Kontaktformular

Fragebogen zur Gebrauchstauglichkeit

QR Code